MATH 521A: Abstract Algebra

Preparation for Final Exam
R, S are rings, not necessarily commutative or with identity F is a field.

1. Carefully define the terms gcd, ring, quotient ring, integral domain, field, $F[x], \mathbb{Z}_{n}$, irreducible element, kernel, image, prime element, ideal, maximal ideal, prime ideal, minimal polynomial, dimension (of a field extension).
2. Carefully the state the following theorems: division algorithm in \mathbb{Z}, division algorithm in $F[x]$, fundamental theorem of arithmetic, remainder theorem, Gauss's lemma, rational root test, Eisenstein's criterion, first isomorphism theorem (book's version or my version).
3. Let $a, b, c, d \in \mathbb{Z}$, and $n \in \mathbb{N}$. Suppose that $a \equiv b(\bmod n)$ and $c \equiv d$ $(\bmod n)$. Prove that $a c \equiv b d(\bmod n)$.
4. Let $a, b \in \mathbb{Z}$. Prove that $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a+b, a-b)$, assuming that both numbers exist.
5. Let $p \in \mathbb{N}$ be irreducible. Prove that $p^{4}+14$ is reducible.
6. We call $r \in R$ idempotent if $r^{2}=r$. Suppose that R has 1 , and let $x \in R$ be idempotent. Prove that $1-x$ is idempotent.
7. Let $f: R \rightarrow S$ be a ring isomorphism. Prove that R has an identity, if and only if, S has an identity.
8. Let F be a field, and let $a, b \in F$. Prove that $\operatorname{gcd}\left(x^{2}+a, x+b\right)=1$ in $F[x]$, if and only if $a \neq-b^{2}$.
9. Find the equivalence classes and rules for addition and multiplication in $\mathbb{Q}[x] /\left(x^{2}-9\right)$. Find all the units and zero divisors.
10. Let $f(x), g(x), h(x) \in F[x]$. Suppose that $\operatorname{gcd}(f(x), g(x))=1$ and that $f(x) \mid g(x) h(x)$. Prove that $f(x) \mid h(x)$.
11. Let $f(x), g(x), h(x), p(x) \in F[x]$, with $p(x) \neq 0$. Prove that $f(x) h(x) \equiv$ $g(x) h(x)(\bmod p(x))$, if and only if, $f(x) \equiv g(x)\left(\bmod \frac{p(x)}{\operatorname{gcd}(h(x), p(x))}\right)$.
12. Let $f(x), g(x), h(x), k(x), p(x) \in F[x]$. Suppose that $f(x) \equiv g(x)(\bmod p(x))$ and $h(x) \equiv k(x)(\bmod p(x))$. Prove that $f(x) h(x) \equiv g(x) k(x)(\bmod p(x))$.
13. Prove that (n) is a prime ideal of \mathbb{Z}, if and only if, n is either prime or zero.
14. Find a ring homomorphism $f: \mathbb{Z} \rightarrow \mathbb{Z}[x]$, such that the image of f is not an ideal.
15. Let $a \in F$ and define $\phi_{a}: F[x] \rightarrow F$ via $\phi_{a}: f(x) \mapsto f(a)$. Prove that ϕ_{a} is a surjective ring homomorphism.
16. Let $a \in F$ and define $\phi_{a}: F[x] \rightarrow F$ via $\phi_{a}: f(x) \mapsto f(a)$. Compute the kernel of ϕ_{a}. What does the First Isomorphism Theorem tell you here?
17. Define $I \subseteq \mathbb{Z}_{3}[x]$ via $I=\{f(x): f(0) f(1)=0\}$. Prove or disprove that I is an ideal in $\mathbb{Z}_{3}[x]$.
18. Prove that the principal ideal $(x-1)$ in $\mathbb{Z}[x]$ is prime but not maximal.
19. Find the minimal polynomial of $\sqrt{5+\sqrt{8}}$ over \mathbb{Q}.
20. Find the minimal polynomial of $\sqrt{3+\sqrt{8}}$ over \mathbb{Q}.

Hint: the answer is of a different degree than for the previous problem.

